
Naval Research Laboratory
Washington, DC 20375-5320

NRL/MR/6400--01-8553

CHEMEQ2: A Solver for the
Stiff Ordinary Differential Equations
of Chemical Kinetics

DAVID R. MOTT

ELAINE S. ORAN

Laboratory for Computational Physics and Fluid Dynamics

July 27, 2001

Approved for public release; distribution is unlimited.
20010719 087

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average t hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

July 27, 2001

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

CHEMEQ2: A Solver for the Stiff Ordinary Differential Equations of Chemical Kinetics

5. FUNDING NUMBERS

6. AUTHOR(S)

David R. Mott and Elaine S. Oran

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, DC 20375-5320

8. PERFORMING ORGANIZATION
REPORT NUMBER

NRL/MR/6400-01-8553

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DOD Washington Headquarters Services
1155 Defense Pentagon, Room 3B269
Washington, DC 20301-1155

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report describes and documents the subroutine CHEMEQ2, used to integrate stiff ordinary differential equations arising
from reaction kinetics. This is a second generation improvement of CHEMEQ using a new quasi-steady-state predictor-corrector
method that is A-stable for linear equations and second-order accurate. A single integration method can now be used for all species,
regardless of the timescales of the individual equations. Start-up costs and memory requirements are low, so CHEMEQ2 is ideal for
multi-dimensional reacting-flow simulations which require the solution of a process-split, initial-value problem in every computa-
tional cell for every global timestep. The algorithm, its implementation, the FORTRAN code, the internal variables and the argu-
ment lists are presented, along with several test problem results.

14. SUBJECT TERMS

Reacting flow
Stiff chemistry
ODE Integrator

Process-split methods
Quasi-steady state

15. NUMBER OF PAGES

67

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Sid 239-18
298-102

Contents

1 Introduction 1

2 Introduction to QSS Methods 3

3 The a-QSS Algorithm 5

3.1 Algorithm Development 5

3.2 Comparison to Previous Methods 8

3.3 Error Analysis 9

3.4 Linear Stability Analysis 11

4 CHEMEQ2 Implementation 12

4.1 Update Equations 12

4.2 Timestep Selection 14

5 How to Use CHEMEQ2 17

5.1 Entry Points 18

5.2 Supporting Subroutines 19

5.3 Calling Sequence ' 20

5.4 Practical Considerations 23

6 Numerical Results 24

6.1 Cesium Tests 24

6.2 Hydrogen-Air Tests 30

6.3 Reacting-Flow Solutions 36

7 Summary 37

8 Acknowledgements 38

9 Appendix A - CHEMEQ2 Variable List 44

iii

10 Appendix B: Code Listings
46

10.1 CHEMEQ2 Code Listing .
 46

10.2 Example Driver Code and Source Term Subroutines
 57

10.3 Output from the Sample Programs
 63

CHEMEQ2: A Solver for the Stiff Ordinary Differential

Equations of Chemical Kinetics

1 Introduction

This report documents CHEMEQ2, the latest version of the FORTRAN package CHEMEQ [1,2]. The

CHEMEQ2 routines integrate sets of coupled, nonlinear ordinary differential equations (ODEs) of the form

-^■=9i = qi-Piyi, 1 <*'<«> (1)

where t/,- is the density of the ith species and <;,• is its rate of change. Our primary application of Eq.(l) is to

sets of coupled, nonlinear ODEs that represent chemical reaction sets. In this case, the dependent variables

{y,-} are concentrations or densities of reacting chemical species. Sometimes this equation is supplemented by

another equation for the change in temperature or energy release that results from the species' interactions.

The source term gi, which is a function of the concentrations and the thermodynamic state, may be written as

the difference of the production rate q, and the loss rate piyi- The timescales rt- = 1/pi for the various species

differ by many orders of magnitude and there may be strong coupling between species (i.e., the Jacobian

matrix dgi/dyj has significant off-diagonal elements). Under these circumstances, the set of equations

represented by Eq. (1) is considered stiff and does not lend itself readily to numerical solution by classical

methods such as the low-order Euler methods or higher-order Adams-Moulton methods [3-5]. Such a system

then requires special techniques to obtain an accurate solution efficiently.

The coupled reaction set represented by Eq. (1) is often a part of a larger model that solves these equations

coupled to the partial differential equations describing fluid dynamics. In such cases, chemical reactions are

only one of several processes that might, for example, include advection, diffusion, or radiation transport.

The numerical methods commonly used to solve such chemically reacting flows use process splitting (or

operator splitting) [5]. The basic idea in operator splitting is to calculate the effects of individual physical

processes separately for a chosen global timestep Atg, and then combine the results in some way. Each

process in turn can change different system variables during Atg. Then, when it is time to integrate the

ODEs representing the chemical changes during Atg, the integrator is presented with a new initial value

Manuscript approved May 9, 2001.

problem in each computational cell. The integrator must therefore solve

~j^=Si, yi{n = Vi l<i<n, (2)

to t = t° + Atg. The ODE integration may subdivide At, into smaller steps, At, to obtain an accurate,

stable solution. Here, the timestep At is called the chemical Umestep because it is the timestep that the

ODE integrator uses to advance the chemical reactions. The size of At generally varies during the course of

the calculation.

Given that fluid dynamic calculations are seldom accurate to better than a few percent, any requirement

of the chemical integrator to calculate the species concentrations more accurately than a few tenths of a

percent is usually excessive. Therefore, the chemical integrator may be relatively low-order. Also, since

the integrator must solve multiple initial value problems "from scratch" at every global timestep, it is

necessary to use a single-point method, requiring information only from the current time level to calculate

the concentrations at At. This is in contrast to multi-point methods that must store concentration or source-

term values from several successive timesteps in order to advance the solution. Within the calculation for a

given Ats, multi-point methods have a start-up penalty until a sufficient number of steps have been taken to

build the history required for the calculation, and they often require interpolation procedures if At changes

during the integration. The chemistry integration from the previous At, does not provide the history needed

to restart the integration because the fluid dynamics calculation changes the state. The values at the end of

the previous chemistry integration are therefore not the values at the start of the next chemistry integration.

By comparison, a single-point method has minimal start-up penalty at the beginning of an integration step

and there is never a fluid dynamic inconsistency.

CHEMEQ [1,2] is a second-order single-step ODE integrator that has been used successfully as a part

of a number of different types of reacting-flow codes. These have included applications to combustion [6-10]

and solar phys.cs [11-13]. CHEMEQ is a hybrid method, which means it chooses between a stiff method

and a non-stiff method for integrating each ODE within the system depending upon the timescale of that

equation. CHEMEQ has been shown to outperform standard stiff ODE solvers by a factor of 50-100 in speed

in validation studies on chemical integrations alone (i.e., not coup.ed to fluid dynamics) when only moderate

accuracy was required [1]. More recently, an integrator based heavily on CHEMEQ outperformed a first-order

quasi-steady-state method and the implicit preconditioning method CHEMSODE [30] on a photochemical

smog problem [29]. Despite its strengths, CHEMEQ exhibits instability under some situations and is limited

in the accuracy it can achieve [19].

This report describes a quasi-steady-state method which we call a-QSS, and its implementation in the

subroutine CHEMEQ2. The a-QSS method is A-stable for linear problems and second-order accurate. It

is more stable, more accurate, and costs less than CHEMEQ, and it successfully integrates some systems

for which CHEMEQ fails [19]. CHEMEQ2, has been used successfully in hydrogen-air flame studies in mi-

crogravity [16], on pulse-detonation engine studies [17,18], on thermonuclear mechanisms used in supernova

simulations, and on the test cases used to validate CHEMEQ [19]. In addition to describing the new algo-

rithm, we present error and linear stability analyses. We also describe how to use the subroutine CHEMEQ2

as a stand-alone integrator and in conjunction with a reacting-flow code. Variables used in CHEMEQ2

are listed and documented in Appendix A, and results obtained using CHEMEQ2 are compared to those

obtained using CHEMEQ on two test problems. Finally, code listings for CHEMEQ2 and its supporting

subroutines are also included.

2 Introduction to QSS Methods

Consider a simplified form of Eq. (1), in which the subscript i is dropped for convenience, t° = 0, and

y(t°) = y°,

f = q-py y(0) = j/°. (3)

If p and q are constant, then Eq. (3) has an exact solution given by

j/(i) = y°e-^ + i(l-C-'>(). (4)

Quasi-steady-state (QSS) methods are based on the solution given in Eq. (4) [21-24]. If q and p are slowly

varying, evaluating Eq. (4) at t = At using q(t°) and p(t°) provides a good approximation for y(At). This

approach gives a first-order method which is the simplest QSS algorithm. More sophisticated QSS algorithms

incorporate the time dependence of p and q and may place Eq. (4) into an alternate algebraic form. The

common thread between QSS methods is their basis on Eq. (4), which requires the methods to return the

exact solution if, and p are constant. There are many QSS methods documented in the literature, and the

or-QSS method is compared to several of them in Section 3.2.

Note that if PAt -. oo (i.e., the ODE timescale is very small compared to the numerical timestep), the

exponential terms in Eq. (4) may be neglected completely, leading to the steady-state approbation [31]

P (5)

Since q and p are functions oft, a steady-state approximation for species i does not imply that the value

of Vi remains constant. Equation (5) assumes that the adjustment toward a «local» equilibrium for species

i based on the current values of* and Pi is instantaneous. In contrast, quasi-steady-state methods retain

information about the transition to equilibrium and are therefore more accurate for larger timescales. Note

that some authors call Eq. (5) a quasi-steady-state approximation [32], emphasizing the continued evolution

of Vi as ,, and Pi change. In this paper, the label "quasi-steady state» is reserved for methods that reproduce

the solution in Eq. (4) for constant , and p regardless of the timescale.

QSS methods are often compared with standard stiff solvers such as LSODE [25,26], which is a variable-

order method based on Gear's backward differentiation formulae (BDF) [27]. However, such comparisons

have been largely limited to the integration of a single problem from one set of initial conditions, not

reacting-flow simulations in which start-up overhead and storage requirements play key roles in the overall

efficiency of the integrator. Verwer and Simpson describe one such test from atmospheric chemistry, in which

a simple two-step BDF method outperforms a first-order implicit QSS method and a two-stage explicit QSS

method. The test involved the calculation of emissions and was not coupled to fluid dynamics [22]. Jay et al.

introduce two QSS methods and examine their performance on a set of atmospheric tests involving 32 species

[21]. These two QSS methods outperformed both a standard, first-order QSS method and CHEMEQ, but

the methods were slower than multi-point BDF methods. Variab.e-order, multi-point BDF methods often

outperform QSS methods when the chemistry integration stands a.one. However, the demands of a reacting-

flow applied are very different than those of a stand-alone integration, and the conclusions of these studies

cannot be applied to reacting-flow prob.ems. The o-QSS algorithm was developed specifically to meet the

demands of a process-split, reacting-flow simulation.

3 The a-QSS Algorithm

3.1 Algorithm Development

Given the demands of a reacting-flow application, we chose a predictor-corrector implementation for the

integrator. Evaluating Eq. (4) at At using initial values serves as the predictor step, and a correction based

on the initial and the predicted values then follows. The corrector step can be repeated using the previous

corrector result as the new predicted value. Predictor-corrector methods of this type are single-point methods

because information from only a single time level is needed to initiate calculation of the solution at the next

time level.

First, a convenient algebraic form for Eq. (4) was chosen. Equation (4) can be evaluated at t = At,

yielding

»<-> = »» +«i, (6,

for a defined by

i K*\ l-(l-e-pA()/(pA2)
<*(P A<) = l-e-pi' ■ (7)

The parameter a is a function of p At, as shown in Fig. 1. Note that a —► 0 as p At —> —oo, a —> 1 as

p At —► oo, and a = 1/2 for p At = 0. The meanings of these limits are clarified by recalling that pAt = At/r.

The a -+ 1 limit corresponds to an infinitely fast ODE relative to At, and a = 1/2 corresponds to an infinitely

slow ODE. Equation (6) is exact for any value of p (provided q and p are constant). However, we split, g such

that py is a non-negative loss rate, so only values of pAt > 0 need be considered. Approximations used to

calculate a(pAt) without the costly exponential evaluation are described in Section 4.1.

A predictor-corrector method based on the solution in Eq. (6) takes the form

. 0 At (q° - p°y°)
yp=y+ i+cfiLy predictor- ^

r o At(q* —p*y*)
y =y + ,1 . A/. Corrector. (9) 1 + Q* At p* v '

a

1r
0.9-

0.8-

0.7-

0.6 -

0.5

0.4

0.3-

0.2

0.1

0
-100

' ' "T I i i i—i I ■ ... |

-50
-i—i—i ^_J

0
pAt

50 100

Figure 1: The parameter a as a function of pAt.

Superscript 0 indicates initial values, and superscripts p and c indicate predicted and corrected values,

respectively. The predictor uses the initial values of q, p, and y, but the "starred" variables (q*, p*, j/*, and

a") can be based on both the initial values and the predicted values.

If we assume linear profiles in time for q and p between the initial and predicted values, we can find

an exact series solution for Eq. (1). (This solution is illustrated in conjunction with the error analysis in

Section 3.3.) Unfortunately, the series solution does not readily provide an efficient integration technique, nor

does it indicate appropriate averages for the starred variables in the corrector. However, solutions do exist

under slightly simpler conditions that can be reproduced with appropriate choices of the starred variables.

For instance, if p is constant and q is linear in time, the exact solution to Eq. (1) can be written as

rtAo^+^zga (10)
1 + a At p v '

for a = a(pAt) from Eq. (7) and

q = aq(At) + (l-a)q°. (11)

Alternatively, if q = 0 and p is linear in time, the exact solution of Eq. (1) is

1 + a At p v '

phich

P=2(p(Ai)+P°), (13)

and 57 = a(pAt) from Eq. (7).

These results suggest a corrector of the form

0 At(q-py°)
y =y + , T-AV-- (14) 1 + a Alp v '

To calculate q and p from Eqs. (11) and (13), we replace q(At) and p(At) with the predicted values qP and

pP. When q and p are known functions of t, the predicted values are replaced with the exact values at At.

Using {q,p,y°,a} for {q*,p*,y*,Q*} in Eq. (9) gives a method which is A-stable for linear problems and

second-order accurate, as is shown in Sections 3.3 and 3.4. We refer to the new method as a-QSS, which

uses

uses

emphasizes the dual role that a plays in returning the exact solution for constant q and p and in providing

a weighted average of q when q is not constant.

3.2 Comparison to Previous Methods

In addition to the algebraic form chosen for Eqs. (8) and (14), a-QSS differs from previous QSS methods

in its choice of averaging and its implementation as a predictor-corrector method. Previous methods that

calculate average values for p and q use the same averaging method for both terms. For example, the two-

stage explicit method introduced by Verwer and Van Loon [23] and tested by Verwer and Simpson [22]

a simple algebraic average for both q and p calculated from initial and predicted values. CREK1D [24]

an implicit exponential Euler formulation in which a(pAt) gives a weighted average of the composite source

terms:

y(At) = y°+At (ag(At) + (1 - a)g°) . (15)

In contrast, the a-QSS algorithm uses a simple algebraic average for p and an a-weighted average for q in

order to match the exact solutions described in Eqs. (10) and (12).

Other QSS methods combine the results of first-order calculations in a way that improves accuracy. Jay

et. al. [21] describes two such methods. Their "extrapolated QSS" method finds the solution at <° + At, first

with a single step and then with two steps of At/2 each. A simple extrapolation then estimates the solution

that would result if an infinitely small timestep were used. Their second method, "symmetric QSS," is a

two-step method requiring three evaluations of the source terms. Each of these steps acts as if q and p were

constant, and the values for q and p are taken at the same time level based on the previous calculation. No

averaging of q or of p occurs between time levels in these methods.

The algebraic form of Eqs. (8) and (14), which was introduced in Eq. (6), is based on the asymptotic

update employed by CHEMEQ when the timescale for an equation is smaller than some user-specified value

[1,2]. However, CHEMEQ effectively replaces a(pAt) with the constant 1/2, which is equivalent to choosing

the Pade approximation

exp(z) ^ —- (16)

in either the definition of a or in Eq. (4). When the timescale for an equation is larger than some user-specified

value, that equation is integrated using the modified Euler method. The hybrid method studied by Lorenzini

and Passoni [29] uses CHEMEQ's update equations but different criteria for determining the timestep and

for choosing between the asymptotic update and the modified Euler update. CHEMEQ's asymptotic update

also uses different averages in the corrector for p and q than those used in Eq. (14). These differences lead

to instability in CHEMEQ that is discussed more thoroughly in Section 6.1. The averages chosen by a-QSS

eliminate this instability, and a-QSS automatically approaches the modified Euler method as pAt —»■ 0.

3.3 Error Analysis

The method has a third-order error term for a single step, which makes it second-order over the course of

an integration. This can be shown by examining the exact series solution of Eq. (1). Writing the series for

y(t) about y(t° = 0) = y0,

oo

y(t) = yo + yit + y2t2 + ... = Y,yj tJ> (17)
i=o

the derivative is given by

• °°
-£ = Vi + 2y2< + +3j/3<2 + • • • = ^JVj <i_1- (18)

i=i

This development deals with a single species, y, so yj is the coefficient of the t3 term in the expansion in

Eq. (17) and not the concentration of the jth species in a multi-species system. Similarly, series expansions

for q(t) and p(t) are given by

«(*) = £«,•*'■. (19)
i=o

p(o = !><''• (2°)
j=0

Substitution into Eq. (1) using Eqs. (17)-(20) gives

yi = qo -poyo, (21)

2/2 = 2(91 ~(Pi 2/o+Po2/i)), (22)

2/3 = 2 («2 - O'22/o + Pi2/1 + P02/2)), (23)

and leads to the general expression

yi =] («>-i - ^Pj-i-kVk J (24)

for j > 0. (The exact solution for q and p both linear in time that was mentioned in Section 3.1 is obtained

by assuming pj = qj = 0 for j > 2.)

In general, , and p are given as functions of y, not as functions of t. Therefore, the coefficients in

Eqs. (19) and (20) are not known, and Eq. (3) is a nonlinear differential equation. We will first perform an

error analysis for the linear version of Eq. (3), in which , and p are known functions of t, and then extend

this analysis for the nonlinear case. For the linear case, the predicted values are simply f = q(At) and

f = p(At). Subtracting the series expansion for Eq. (14) from the exact solution evaluated at t = At yields

y{At) ~yc = ~ [~Piq0 - q2+P2yo)

+ 0(At4) [linear case] (25)

The leading error term is O(At^) per timestep. Since the number of timesteps required to reach a given time

is proportional to l/At, the error for the method is second-order when these errors all reinforce [3]. Note

that this error term disappears for constant p and linear q (which gives Pl = q2 = p2 = 0) and linear p with

g = 0 (which gives q0 = q2=P2 = 0). These two cases were used to choose how to calculate the starred

variables in Eq. (9), and the method is exact for either case.

The method is second-order for nonlinear problems as well. To illustrate this, first note that the leading

error term for the predicted values yP is second-order:

At2

y(At) -jf = __(9l _ piyo) + 0(At3). (26)

Since q and p are polynomials in the species concentrations for the nonlinear systems representing reaction

kinetics, the leading error terms for the predicted values «f and ? are also second-order. This error can be

represented as

q(At) - q» = („At2 + 0(A/3), (27)

p(At)~}f = epAl2 + 0{At3), (28)

10

for some unknown coefficients eq and cp. Using these predicted values in Eq. (14) gives an error term of the

form

y(At) - yc = At I-—Pi?o - ^2 + gP22/o + ^i ~ 2€f>y°)

+ 0(At4) [nonlinear case]. (29)

As with the linear problem, the leading-order error term for the nonlinear problem is 0(At3) per timestep,

so the method is still at least second-order over the course of an integration.

3.4 Linear Stability Analysis

For the single linear equation

* = *», P«)

the coefficient A can be a function of t but not a function of y. Using the average value A given by

A=i(A(t = 0) + A(t = A0), (31)

a-QSS has amplification factor G given by

G=l + ^^. (32)
1-äAA* v ;

The signs in Eq. (32) reflect the fact that A = —p, and note that ä = a(—XAt). Using Eq. (7), the expression

for G simplifies to

G = exp(XAt). (33)

For A = a + by/— 1 with a, b both real, the magnitude of G is simply

||G|| = exp(aA<). (34)

Since ||G|| < 1 for a < 0 for any value of b, the method is A-stable. This does not prove that a-QSS is

A-stable when applied to nonlinear systems of ODEs for which {pi} and {<j;} depend on {t/,}. However,

in testing to date, the accuracy-based timestep criterion used originally in CHEMEQ has worked well for

a-QSS. To ensure that stability is maintained when the corrector is iterated, a new stability check was

introduced [20] for At. These accuracy and stability criteria are discussed in Section 4.2.

11

4 CHEMEQ2 Implementation

4.1 Update Equations

CHEMEQ2 uses the a-QSS update on all equations in the system regardless of the timescale of the ODE.

This makes the timestep less prone to oscillations than for hybrid methods (like CHEMEQ) that switch

between update methods. In addition, iterations may be done on the corrector that improve the accuracy

of the result.

Again using a superscript 0 to indicate values at the begining of the chemical timestep and a subscript i

to specify species i, the a-QSS update is given by

^_J/i+ l + a?A<p? Predictor, (35)

c_ 0 At(qi-Piy°)
Vi ~Vi + 1+äjAtW Corrector- (36)

The predictor uses all initial values, and a? = a(p?A*). After calculating the predicted concentrations {tf)

for all of the species in the system, next obtain {«?} and {p?} from {j/f }. Then calculate

w = 5fr?+rf). (37)

evaluate a, = a(p^At), and finally

fc = <Mf + (l-57)rf. (38)

These averages are then used to calculate yf, and to iterate on the corrector, use the value for yf from one

step as j/f for the next step.

Having an accurate approximation for *(PAt) that does not require an evaluation of the exponential

function makes the method given by Eqs. (35) and (36) more attractive. Recall that p is strictly non-negative

based on the way the chemical source term is split, so this approximation need only hold for positive values

of p At. Equation (7) indicates that as pAt -+ oo, a reasonable approximation for a(p At) is

a(pA')Ril-i- (39)

12

0.1 0.2 0.3 0.4

r=1/(pAt)
0.5

Figure 2: Approximations for a as a function of r = l/(pAt).

Using this approximation for a eliminates the need to find an accurate approximation for e~x as x —* oo, as

would be required if the solver were based on Eq. (4) rather than Eq. (6). Using the Pade approximation [4]

_ 1680 + 840a; + 180a;2 + 20a;3 + x4

1680 - 840a; + 180a;2 - 20x3 + xA (40)

in the definition of a(p At) gives

a(A</r)
840r3 + 140r2 + 20r + 1

(41)
1680r3 + 40r

for r = l/(pAt). These two approximations are shown with the exact curve for a in Fig. 2. The approxi-

mation given by Eq. (41) is labeled Pade (a). Note that unlike Fig. 1, the a:-coordinate in Fig. 2 is r/Ai.

The linear approximation in Eq. (39) is closer to the exact value of a than the approximation in Eq. (41) for

r < 0.16762; for r > 0.16762, Eq. (41) is more accurate. Therefore, the better approximation can be chosen

based upon the value of r. This combined approximation differs from the exact value of a by at most. 0.3%.

This error occurs in a narrow region around the transition from the linear to the rational approximation.

As »■ —► oo, Eq. (41) is actually better behaved numerically than Eq. (7), which requires the exponential

function evaluation.

13

A second approximation for a that can be used alone (i.e., does not require the linear approximation,

Eq. (39), to take over as r -► 0) results from the Pade approximation

360 + 120x + 12x2

This approximation gives

360 - 240* + 72x2 - 12a;3 + x4 ' (42)

a{At,r) « j^; + 60r2
+llr+l

' ' 360r3 + 60r2+12r+T (43)

This second approximation for a is designated Pade (b) and is also shown in Fig. 2. Since this approximation

recovers a = 1 for r/At = 0, Eq. (43) can be used alone with only a slight accuracy penalty compared to

the combined approximation of Eqs. (39) and (41). In testing to date, this accuracy penalty in a has not

caused accuracy problems in the species solutions, and using this single equation eliminates the logic check

required to determine which of Eqs. (39) or (41) to use for the combined method. The success of CHEMEQ,

which effectively uses a = 1/2, suggests that an even simpler approximation for a(PAt) than those shown

here may provide sufficient accuracy with lower computational cost.

4.2 Timestep Selection

Accuracy is controlled by choosing A* and the number of corrector iterations, Nc. A single corrector

calculation is performed if Arc = 1, and as Appendix B illustrates, increasing Nc improves accuracy. Timestep

selection is identical to that used by CHEMEQ [2]. The initial predicted values and final corrected values

are tested to see if they satisfy

iitf-»rii<<tf (44)

for some specified constant e, typically ~ l0->. If Eq. (44) is not satisfied, the step is repeated with a smaller

timestep. As Young notes [2], it is best to reduce the timestep sharply (a factor of 2 or 3) rather than slowly

as less time is wasted finding a step size sufficiently small for convergence. However, if the convergence

criterion is met easily during the iteration, it is best to only increase the step size by 5-10% each step [2].

The timestep modification is performed by modeling the difference between predictor and corrector as a

14

single second-order term. Choose 0,2 such that

yf-S?=a2(A0L, (45)

where (Atf)0/<f is the timestep used to calculate y? and yf from the initial conditions. The user specifies a

target value for the relative magnitude of this correction term, given by

\\a2At2\\iarget=eyl (46)

The values of e in Eq. (44) and e in Eq. (46) are related by

e = ce (47)

for some user-specified c > 1, so the error criterion in Eq. (44) is rarely violated for the chosen timestep.

Defining the parameter cr as

^»(ütjffl), m

the value of At that limits the largest relative concentration change to the target magnitude is

(At)tarset = ^1. (49)

Again, the difference \\yf — t/f || is calculated using the initial prediction for y? and the final corrected value

°fyf.

In CHEMEQ2, the new timestep is calculated using

(At)new = (AOOM (-pr + 005 j . (50)

In Eq. (50), yfo is an estimate by three Newton iterations for y/a using a as the starting value. Equation (50)

gives the desired asymmetrical property in that At decreases faster than Af would increase for the inverse

value of cr. In addition, At is modified very little when cr is near 1.

If Eq. (44) is satisfied, the new concentration values at t — t° + (At)0u are set equal to the values of

y\ and the integration continues with timestep (At)new. A successful integration step requires only two

derivative function evaluations when a single corrector step is used, and the timestep selection algorithm

minimizes the number of steps that must be repeated.

15

When m is decaying toward zero, it is constrained by a minimum value. When this lower bound is

reached, the species is no longer considered in the calculation of a and therefore does not affect convergence.

The lower bound is chosen by the user and must be selected to insure that it does not adversely affect the

accuracy of the solution. If the minimum value is too high, a species value could freeze prematurely. This

could corrupt the solution for other species whose values are sensitive to the frozen species. If the minimum

is too low, it can affect efficiency if the decaying mode controls the timestep. Thus it is better to choose

minimum values that are too small rather than too big. This may slightly reduce computational efficiency,

but it will also reduce the possibility of calculating an incorrect solution.

As mentioned in Section 3.4, a-QSS is A-stable for linear problems, but this result holds no guarantees

for the nonlinear systems of chemical kinetics. To ensure that the calculation remains stable, the integrator

can monitor the convergence of the corrector iteration and adjust the timestep if necessary. Let yf> denote

the corrected value of W(A<) after / iterations. The change from one iteration to the next,

Ayf^y?»-^ (5i)

should decrease in size as / grows if the iteration is stable. Therefore, requiring that

IIA^II < \\Ay?»*-\ (52)

where Nc is the specified maximum number of iterations, ensures that the integration remains stable. A step

using At that satisfies the accuracy constraint but fails to satisfy Eq. (52) for any i is repeated using a new

timestep, (At)new, given by

• VHAi^H+ 0.00iy (53)

This instability is generally not seen in «acting-flow applications, so a more sophisticated criterion and

timestep update have not been pursued. The constraint is available in CHEMEQ2, however, should it be

needed.

At start-up, an initial timestep is chosen which approximates the timestep that will be determined by

the predictor-corrector scheme. This initial trial timestep is determined such that none of the variables wiil

change by more than a prescribed amount. If the formation rate ,,- is much larger than the loss rate WK,

16

it is reasonable to assume that qi and p,- will remain relatively constant for large changes in t/t-. The initial

change in y, may be large enough to equilibrate the formation and loss rates for t/{. Thus the initial trial

timestep is chosen as

At = e min f 4, or (if # > p.-j/i) 1/pi J , (54)

where e is a scale factor that need not be identical to the constant used in Eq. (44). Equation (54) is used only

once per global timestep, as subsequent timesteps taken until the end of the global timestep are determined

using Eq. (50).

The effect of the thermodynamic state on the the reaction rate constants has been ignored in the previous

developments. The rate constants are often calculated once before the predictor step using the initial values

and held constant during the corrector step. A new thermodynamic state is then found at the new time

level and used for the following predictor and corrector. If the integration is particularly sensitive to the

thermodynamic state, this state can be recalculated for the corrector using the predicted solution. If the

system requires the integration of a thermodynamic variable (such as temperature) along with the species

concentrations, then the source term for this extra variable is split just as with the concentrations. If there is

no "loss" term for that variable that can be assumed proportional to the variable, then the entire source term

is assigned to q, and the method reduces to the modified Euler method for that equation since <*(0) = 1/2.

5 How to Use CHEMEQ2

The following sections describe what a user must know about CHEMEQ2 in order to use the subroutine

effectively. A description of the four entrance points for the subroutine and the argument variables used

for each is included, as are diagrams indicating the calling sequence used in a stand-alone integration and

in a reacting-flow application. Appendix A describes all internal variables, and Appendix B provides code

listings.

CHEMEQ2 is designed as a replacement for CHEMEQ, so most, of the original CHEMEQ code is retained

in CHEMEQ2. The overall logical structure from CHEMEQ is retained, with the hybrid method replaced

with a-QSS. Minor changes in input/output have also been implemented, and these are discussed in the

17

following section.

5.1 Entry Points

1. CHEMEq2(dtg,gsub,n,y) is the main entrance point and is used to advance the chemical variables in

time.

• dtg: time for which the integration is performed; Atg of Section 1.

• gsub: name of the derivative function evaluator subroutine that provides the source term as ,

and py. The form of gsub and its arguments are given in Section 5.2.

• n: then number of equations to be integrated

• y: array which holds the initial values at the start of the integration and returns the final values

at the end of the integration

2. CHEMSPCepsan, ePsmx, dtmn, tnot, itennx, ns, ,», prt) provides a means to set the solution

parameters used the next time CHEMEQ is called. If the passed variable has value < 0, then the

default value built into the subroutine is used. If the passed value is > 0, then the corresponding

parameter is set to the passed value. For a typical calculation in which the same solution parameters

are used throughout the domain, this routine may be called only once to initialize these parameters. If

the simulation involves multiple regions that make different demands on the speed or accuracy of the

integration, then this routine may be called so that appropriate parameters are used in each region.

The parameters set by each variable and the default value for these parameters are listed below. The

distinction is made between the arguments of CHEMSP and the internal variables.

. epsmn: sets epsmin, the accuracy parameter e in Eq. (46) for determining the timestep. Default

value of epsmin: 10-2.

• epsmx: sets epsaax, the parameter c in Eq. (47) for specifying when a step must be repeated

using a smaller timestep. Default value of epsmax: 10.

• dtmn: sets dtmin, the minimum allowed timestep. Default value of dtmin: lO"15.

18

• tnot: sets tstart, the value of the independent variable at the start of the global timestep.

Default value of tstart: 0.

• itermx: sets itermax, the number of corrector iterations performed. Default value of itermax:

1 (a single corrector step).

• ns: integer that indicates the number of entries in ymin to initialize with ymn

• ymn: sets ymin, the array which holds the minimum allowed values of the dependent variables (for

integration control). Default value of ymin(i): 10-20 for all values of i.

• pit: if prt = 0, the list of parameters set by the current call to CHEMSP is printed.

3. CHEMCT(tmk) provides diagnostics by printing the number of derivative function calls and the number

of times an integration step was redone due to a violation of the accuracy criterion or the stability

criterion.

• tmk: REAL number used to identify the call; the value of the independent variable is often used.

4. CHEMPR(y ,n) is called for diagnostic purposes and prints partial lists of internal variables. The variable

definitions are the same as those in the CHEMEQ2 call.

5.2 Supporting Subroutines

1. CHEMER is a diagnostic routine which warns the user that the minimum timestep threshhold has

been violated and that the integration has been stopped. No arguments are required. The user may

supply additional error-checking capabilities or diagnostic output.

2. gsub(y, q, d, t) is the derivative function evaluator. The actual name of this subroutine is passed

to CHEMEQ2 as an argument. This is so the routine can be changed in different regions or regimes.

• y: array holding the dependent variables

• q: production terms; entry q(i)= <?,; in Eq. (1).

• d: loss terms; entry d(i)= p^y,- in Eq. (1).

• t: current value of the independent variable

19

Calculate initial conditions,
control parameters

CallCHEMSPto
set integration

parameters

CallCHEMEQ2to
perform integration

Stop)

Figure 3: Basic calling sequence to obtain final values

5.3 Calling Sequence

If the user simply needs the species concentrations at tfinal for a single problem, the basic calling sequence

illustrated in Fig. 3 should be used. A single call to CHEMSP is required to initialize the integration

parameters unless all default values are used, and dtg = t}inal. Using the version of CHEMEQ2 included in

this report, no intermediate values are provided between * = 0 and tJinal. The driver program included in

Appendix C has this structure imbedded in a loop that scrolls through various solution parameters to give

a set of final values. If intermediate values are desired, a write statement can be added within CHEMEQ2

in order to print the results of a successful step before the next step is taken. To obtain intermediate values

without altering CHEMEQ2, the integration time tJinal may be broken-up as illustrated in Fig. 4. After each

Atg step, control returns to the driver program and values may be printed. The next step in the integration

is taken, and the result of the previous step is used as the initial condition. The optional CHEMSP call is

needed if the source terms depend on * (such as in atmospheric chemistry) or if the solution parameters are

to be changed (i.e., perhaps the initial time interval is very sensitive and must be run more accurately, but

later tunes allow this constraint to be loosened). Variables changed via CHEMSP and passed as arguments

to CHEMEQ2 may be moved if necessary for efficiency. Please see the Section 5.4 for a discussion of some

20

Calculate initial conditions,
control parameters

CallCHEMSP

set At

optional CALL CHEMSP

CallCHEMEQ2

Print diagnostics,
reset At

t=t + At

Yes

Figure 4: Calling sequence for a single-point integration that allows access to intermediate values.

practical aspects of using CHEMEQ2.

Figure 5 illustrates the use of CHEMEQ2 in a reacting flow code. The effects of the fluid dynamics are

calculated by a separate algorithm, and then the conditions in each compuational cell are sent to CHEMEQ2

separately to calculate the effects of the chemistry. This is the simplest implementation for reacting flow,

and as mentioned earlier massively parallel versions of CHEMEQ have been implemented [14,15]. In general

the optional calls to CHEMSP will not be needed since the solution parameters set by CHEMSP will be

the same for all cells. If CHEMSP must be called repeatedly, the logical check that determines whether

information about the call to CHEMSP is printed can be removed.

21

Calculate initial conditions,
control parameters

CallCHEMSP

advance fluid dynamics At using
 fluid dynamics routines

*
i = 1

r. r-;
| optional CALL CHEMSP |

 L
Call CH EM EQ2 for cell i

I
i = i+1

No

Yes

t = t + At

Yes

1 No

Stop)

Figure. 5: Calling sequence in a reacting-flow program. The parameter imax gives t. ax gives the number of cells.

22

5.4 Practical Considerations

To help the beginning user of CHEMEQ2, some observations and suggestions are made for optimizing the

use of the subroutine. First, the improvement produced by adding corrector iterations is problem specific.

Some systems, such as cesium integration discussed in Section 6.1, converge in about three iterations. Other

systems, such as the hydrogen-air mechanism discussed in Section 6.2, take much longer. Lowering e may

be more effective in improving accuracy than increasing Nc depending upon the problem. If a very accurate

result is required and the added computational cost can be tolerated, increasing the number of corrector

iterations dramatically is very effective [19].

As stated earlier, a-QSS is not guaranteed to be stable for nonlinear systems. If instability is seen, the

user can use the convergence-based stability check on At discussed in Section 6.2 if Nc > 3. The lines which

implement this check have a "D" in the first column. Many compilers allow the user to include these lines

in the compilation by specifying a compiler option such as -d_lines. Without such an option, these lines

are treated as comments and not compiled. Since most reacting-flow problems will not require the stability

check, this implementation is most efficient. If the stability check is needed on a platform that does not

support such a compiler option, then the lines must be manually included.

The two options for approximating a described in Section 4.1 are included in the code, but the one labeled

Pade (b) is recommended. Although the combination of Pade (a) in Eq. (41) and the linear approximation

is Eq. (39) are closer to the exact curve for a (see Fig. 2), the single equation given in Eq. (43) provides

comparable accuracy in the species concentrations and eliminates an expensive logic check.

Finally, users may find the variable groupings in the argument lists of CHEMEQ2 and CHEMSP incon-

venient. The user may wish to move arguments from one list to the other, concentrating the parameters

that change regularly in the CHEMEQ2 argument list, and relegating to CHEMSP those parameters that

need not be changed after an initialization. This could save the additional calls to CHEMSP to reset a single

variable. For instance, if the source term calculation depends upon the value of the independent variable t,

then this variable could be passed through the CHEMEQ2 argument list rather than set through a call to

CHEMSP.

23

Table 1: Cesium Mechanism

Reaction ki

1) 02- + Cs+ k-\Cs + 02 5 x 10-8 cm3/s
2) Cs+ + e h Cs 1 x 10-12 cm3/s
3) Cs ^Cs+ + e 3.24 x 10-3s-x

4) 0;ho2 + e 4x lO^s"1

5) 02 + Cs + Mh Cs02 + M 1 x 10-31 cm6/s
6) 02 + e + 02^Oj+02 1.24 x 10-30 cm6/s
7) 02 + e + N2 ^ 0; + N2 1 x IQ"31 cm6/s

6 Numerical Results

Two examples are described here in detail. The first is a system of equations involving cesium and cesium

ions that was originally suggested by D. Edelson of Bell Laboratories. This test was used to compare the

original CHEMEQ subroutine to other stiff solvers, including those of Gear and Kregel, as shown in [2]. The

second set of tests involves a hydrogen-oxygen combustion mechanism and focuses on the effect of corrector

iteration on the timing and accuracy of <*-QSS. Two reacting-ftow applications are then discussed briefly in

Section 6.3.

6.1 Cesium Tests

The cesium mechanism, shown in Table 1, involves seven species and seven one-way reactions. The rate

constants k{ are fixed at the values shown. The inert collision partner, M in reaction 5, may be Cs, Cs02,

02, or N2, so the concentration of M used to calculate the reaction rate is the sum of the concentrations of

these four species. The initial conditions and the solution values at 1000 seconds used for the accuracy study

are included in the Table 2 [2]. These solution values, which we call the «accepted values" in the following

error analysis, are the common result of running LSODE and CHEMEQ2 at excessively high accuracies.

The species number densities, shown in Fig. 6, were generated using CHEMEQ2. The figure shows a

fast initial transient, which is followed by a slow evolution toward equilibrium. A logarithmic scale in time

is required to show this evolution. Equilibrium is not reached by 1000 s, so comparing the solution at this

time to an accepted solution provides a suitable check of a kinetic integrator.

24

Table 2: Initial and t = 1000 sec species concentrations for the the cesium mechanism test problem.

Species y,(0s)(cm-3) yi(1000s)[cm-a]
e lx 102 4.9657897283 x 104

o2- 5.2 x 102 2.5913949444x 104

Cs+ 6.2 x 102 7.5571846728 x 104

Cs 1 x 1012 1.5319405460 x 103

Cs02 0 1.000 x 1012

N2 1.4 x 1015 1.400 x 1015

o2 3.6 x 1014 3.590 x 1014

10 14

^10 12

E o
10 10

(0
c

Q 10£

n
E
z 10b

104

_L

CsO„

o:

10"4 10 -3 10"2 10"1 10° 101 102 10a

Time (s)

Figure 6: Species number densities as a function of time for the cesium mechanism test problem.

25

100
Time (s)

150 200

fhfrK%fTimrteP
D

hi?0
c
rieS,f0r the CGSiUm inteSration usinS CHEMEQ and CHEMEQ2 for e = 0 01 and

the stability ratio, R, defined by Eq. (55), for Oa~. Ä is calculated with At used by CHEMEQ2.

Timestep histories for CHEMEQ2 and for CHEMEQ are shown in Fig. 7. As mentioned earlier, the

asymptotic update used by CHEMEQ is unstable under some circumstances [19]. The linear stability analysis

of CHEMEQ led to a parameter R, defined by

R=*i(i-L-

which we call the stability ratio. The average timescale, r, is given by

1 1/1 1

> + ;?

(55)

(56)

for the initial value r° and the predicted value r». Stability requires R < 2 for any species integrated with

the asymptotic method [19]. If the timescale is constant or decreasing, this stability constraint is satisfied.

If the timescale is increasing, At may be large enough to make the method unstable.

26

During the first 200 seconds of the simulation (i.e., the span of time shown in Fig. 7), CHEMEQ treats

only OJ with the asymptotic update, so R for this species is included in the figure. The values of At are

read from the vertical axis to the left of the figure, and the values of R correspond to the axis on the right.

The stability limit of R = 2 is marked by a dashed horizontal line. We see that R becomes larger than 2 after

approximately 10 s, and CHEMEQ starts producing oscillations in At approximately 10 s after that. These

oscillations cease after R returns to values lower than 2. CHEMEQ2 does not produce these oscillations,

although the accuracy-based timestep constraint lowers the timestep in this region.

A series of studies evaluated the accuracy of CHEMEQ2 compared to CHEMEQ. These solved the Cs

test problem given above and used the reference solution at 1000 s as a benchmark. The tests varied the

value ofe from 10_1 to 10-6. Additional tests fixed e and varied Nc from one to ten. Figure 8 summarizes

the results of the tests by showing the rms error as a function of CPU time, which was scaled by the smallest

increment the timing routine could resolve. The CHEMEQ2 results are shown as a series of overlapping

profiles of the shape shown in the schematic in Figure 9. Each profile is for a fixed value of e, but the points

on it correspond to different values of Nc.

The error computed for each computation (fixed e and Nc) is based on the the accepted values at 1000 s.

The relative error e,- for each species i

^.accepted — ^'.calculated ,__>
e« = (57)

y», accepted

A root-mean-square error for the six reacting species (excluding the inert N2) is:

erms = \l^f£. (58)

There is only a single curve for CHEMEQ in Figure 5. Each point on this curve corresponds to a different

value of e. The hybrid method, as implemented in CHEMEQ and used in this problem, becomes unstable

and the solutions are corrupted if multiple corrector iterations are used. Lorenzini and Passoni, however,

were able to use multiple corrector iterations successfully in other implementations of the hybrid method for

other problems [29]. CHEMEQ2 does not have this instability problem.

For a single-iteration and large enough e, the CHEMEQ2 results lie roughly along the CHEMEQ curve.

In this case, the CHEMEQ2 simulation takes less time, but gives a slightly less accurate solution. As e is

27

-1r-

0

CHEMEQ

CHEMEQ2

1 2 3
log10(scaled CPU time)

CHEME02 for mCan SqTe eTLat 100° S V6rSUS SCal6d CPU time to reach WOO » for CHEMEQ and

S^fexfj^erhSCHEMEn02 C' f^Y* "f CHEMEQ2 CU™ iS Sho™ in F^ 9, and the
corTespond t- 1^ (l^ T" !? ^ ^ VaIue

fi
of £ for th°Se reSults- The CHEMEQ results correspond to e _ 10 (highest point on the curve) to lO"6 (lowest point).

28

o
0)
£

O)
o

10
——•

log10(scaled CPU time)

Figure 9: Schematic of the types of profiles for fixed e in Fig. 8. The numbers next to each symbol give the
corresponding value of yVc. As described in the text, the solutions for the cesium test problem converge after
about three iterations.

29

decreased, the CHEMEQ results do not give the same increase in accuracy for the increased computational

costs.

The curves shown in Figure 5 can be explained by comparing the CHEMEQ and the CHEMEQ2 al-

gorithms. The CHEMEQ stiff predictor is identical to the CHEMEQ2 predictor in the limit as <*° - 1,

which corresponds to p°At - oo. The CHEMEQ stiff corrector, however, uses different average values for

q and p than the CHEMEQ2 corrector, and also effectively uses the PAt ^ 0 limit value of a = 0.5. This

inconsistency in the effective a between CHEMEQ V stiff predictor and corrector limits the growth of At for

CHEMEQ. Therefore, CHEMEQ takes a smaller timestep than CHEMEQ2 for the same e, and, for moderate

accuracy, this inconsistency in a does not affect the accuracy of the solution. The best accuracy achievable

by CHEMEQ does suffer from this inconsistency, however, so as e becomes smaller, CHEMEQ2 gives more

accurate answers than CHEMEQ.

The CHEMEQ2 curves for a fixed e show dramatic increases in accuracy after just a few iterations. After

about three iterations, the curves for a given e flatten, which indicates that the method has converged to a

final corrector value, and additional iterations do not improve the accuracy. The computational expense in

adding iterations is less than that in reducing e for similar improvements in accuracy. As e is lowered,

accuracy improves because the timestep is decreased. As the number of iterations increases, accuracy

improves because the corrector is able to refine the linear approximation for p and , used to calculate 9~

and p for the corrector equation, Eq. (36). Not all systems will converge for such low values of Nc, but, in

general, iterating the corrector even one or two times improves the accuracy.

For the CHEMEQ2 curve for e = 0.1, the simulations took so little time that the precision of the timing

routines was not sufficient to measure differences in timing between these runs. In addition, the calculations

were performed on a computer that allows access to multiple users. These affects contribute to the error and

uncertainty in the low-resolution data.

6.2 Hydrogen-Air Tests

The tf2-air combustion mechanism used consists of twenty-five reversible reactions involving nine species

(including inert N2) [34]. This mechanism is closely related to that used by GRIMcch. The reaction rates

30

x10

2-

18

CO

"E 1 5

c
Q 1

n
E
3

0.5

H,

CX

J L

H20

K

J ' ' i

3 Time (s) 4

Figure 10: Solution for the single-point hydrogen-air integration.

are calculated using the modified Arrhenius form

x10 -4

kr = ATBexp(-C/T) (59)

where T is the temperature. The rate kr is either a forward or backward rate. The parameters A, B, and C

for both the forward and backward rates for each reaction are given in reference [19]. Initially the mixture

is at 1000 A', a pressure of 1 atmosphere, and in the ratio 2:1:3.76 for Hi'Oi-No- These conditions lead

to initial number densities on the order of 1018cm~3 for these three species. A minimum number density

of 10~30cmT3 was imposed on the other species to prevent numerical difficulties. Nitrogen is inert for the

mechanism, and thus acts as a diluent.

Selected species' number densities for this problem are presented as a function of time in Fig. 10. The

figure shows that after an induction time of about 3.4 x 10~4 s, //2 and On are converted to HnO in a

31

relatively short time period. During this induction time radicals are formed that eventually initiate the

rapid conversion of H2 and 02. Here, we focus on the H number density profile, which has a peak in the

reaction zone that is difficult to predict accurately. A series of calculations examined the effect of e and Nc

on the location and the value of this peak. The errors in these parameters are calculated as

t error - ^P ~ preference II tp error _ (

P,reference

(n„)p error = "^ "("preference«

("preference (bl)

for peak number density value (nH)p at time tp, compared to reference values. The reference values were

obtained by integrating the equations with CHEMEQ2 for increasing Nc and decreasing e values, until

the solution ceased changing. The solution was then verified by comparison with a solution obtained by

a simple modified Euler method using an exceptionally low error tolerance. Table 3 lists these errors and

the CPU time required to reach 5 x 10"4 seconds for a variety of e and Nc values. These calculations were

performed on a DEC Alpha workstation, and the integration time is scaled relative to the e = 1(T3, Nc = 1

simulation. These calculations did not assume that the thermodynamic state or the rate constants remained

fixed during a chemical timestep. The temperature was recalculated for each corrector iteration based on the

species number densities calculated from the previous iteration. The rate constants were then recalculated

with this updated temperature. Repeating this calculation for every iteration is very expensive, and the

performace of the method will improve substantially if the rate constants are calculated once and fixed for

the chemical timestep.

Figure 11 shows results of integrations for e = 10~4 and Nc = 1, 5, and 10. This should be contrasted

to the cesium calculations of the previous section that converged by Nc = 5. In this case, the profiles

are converging to the reference solution, but they have not completely converged by Nc = 10. Note that

CHEMEQ results are essentially equivalent to the Nc = 1 case. Table 3 suggests that reducing e may be a

more efficient way to improve the accuracy of the solution than increasing the iteration count. The errors are

not of the same order as e, however, and reducing e by an order of magnitude does not result in a comparable

reduction in the error. The errors in the time-to-peak and the peak value are not even comparable, with the

32

x10 17

E o

(0 c o
Q
<u
n
E
3

3.5
Time (sec) x10 -4

Figure 11: Hydrogen number density for Nc = 1, 5, and 10, and e — 10 4. The dark, solid line is the
reference solution, and the numbers next to the remaining curves indicate the value of Nc for each profile.

33

Table 3: Results obtained by varying e and Nc for the hydrogen-air reaction integration.

It)"4

IO-5

3(a): tp error
Nc = l

6.66 x 10~2

2.79 x 10-2

1.06 x 10-2

2.97 x KT^
1.10 x 10~2

3.67 x IQ"3

10
1.84 x 10~2

6.29 x IO-3

1.97 x IO-3

IO-3

IO-4

IQ-5

Nc = l
3(b): (nH)p error

0.392
0.146

4.48 x 10-2

0.166
4.56 x 10-2

1.27 x IQ-2

10
9.40 x 10~2

2.35 x 10-2

6.49 x IQ-3

3(c): Scaled CPU times to 5 x 10~4

£

IF7"
io~4

io~5

Ne = l
1.00
3.19
11.8

2.92
9.92
36.7

10
5.33
18.3
67.5

Table 4 Errors in t and (nH)p for e = 10"» and JVC = 1, 5, 10, and 1000, and the scaled CPU time required
for each simulation to reach t = 5 x 10-4 seconds. required

iterations tp error yn error CPU time
1 6.66 x 10-'2

0.392 1.00
5 2.97 x 10-2

0.166 2.92
10 1.84 x 10~2

9.40 x 10~2
5.33

1000 2.71 x 10-6
1.77 x IQ"4

489

(n*)p much more prone to error than tp. This peak is very difficult for a low-order method to calculate. A

higher-order method that employs information from several ümesteps would prov.de a much better result

for this problem.

The question remains as to how accurate the integration can become if the number of iterations is

increased dramaUcally. The results for e = 10~3 from Table 3 are repeated in Table 4, and additional results

obtained using 1000 corrector iterations are also included. For the Nc = 1000, the error in the peak value

is an order of magnitude less than e, and the time-to-peak error is three orders of magnitude lower than e.

This suggests that the corrector equation Eq. (36) provides an accurate representation once it is sufficiently

converged. Again, the thermodynamic state and the rate constants were recalculated for every corrector

iteration, and the high CPU times are due in part to this largely avoidable expense.

34

.+■/**•/
*NW'

ooooaooooo o o—e—o ooo o o—e—e—e—©

Reference Solution
CHEMEQ2
CHEMEQ2 with stability check
on At

J I L X J I !_ J_J I 1 l_l

3.5
Time (s)

3.75
x10~

Figure 12: Hydrogen number density as the integration approaches equilibrium, e = 10-5, Nc = 10. The
dashed line is the standard CHEMEQ2 result. The profile given by open circles includes the stability
constraint on At (see Eq. (52)).

An instance which requires the stability check on At described in Section 4.2 is illustrated in Fig. 12. This

figure shows the H profile as the system reaches equilibrium. These results indicate that the accuracy-based

timestep can be too large for the corrector iteration to remain stable despite the fact that the stability analysis

indicated that o-QSS is A-stable for linear problems. Note that the scale in Fig. 12 is exaggerated; the range

covered by the number density axis spans approximately 1% of the equilibrium value. This instability is not

a problem in reacting-flow applications, as the frequent restarting at new global timesteps limits how large

the timestep becomes. In this single-point, integration, however, the instability is seen. The oscillations in

the number density disappear when the stability constraint given in Eq. (52) is required, and the predicted

equilibrium value agrees well with the reference solution.

35

6.3 Reacting-Flow Solutions

Two reacting-flow cases will be briefly discussed here. These results are provisional, as no rigorous, systematic

studies have been performed. A thorough comparison between integration methods would include the effects

of implementation choices, accuracy requirements, and stiffness. The stiffness issues are not limited to

the chemical mechanism itself but also include coupling of the chemical timescales and the fluid dynamics

timescales (i.e., how much the integrator subdivides the global timestep in order to perform the chemistry

integration). Such a study is planned for the future. However, from our experiences, we expect the results

described below to be typical.

Uphoff et al. [35] studied two-dimensional detonation formation using an H2/02 mechanism with 18 re-

actions and 8 species. They compared process-split reacting-flow calculations using CHEMEQ and METAN1

[36] as the chemistry integrator. METAN1 is a general stiff solver which employs a semi-implicit mid-point

rule and extrapolation to a «zero stepsize» solution [37-39]. For this specific set of calculations, CHEMEQ

performed the required chemical integrations in approximately one-sixth of the time required by METAN1.

Documentation of accuracy parameters used and solution options chosen for the calculations is not available.

An additional calculation was performed in order to compare the efficiency of a-QSS to a Gear method. A

one-dimensional hydrogen-air premixed flame was simulated using a process-split method [33] which employed

FCT for integrating the fluid convection [40]. The chemistry integration was performed using CHEMEQ2,

and also using DEBDF, which employs a variable-order Gear method as implemented in LSODE. DEBDF is

part of SLATEC, a library of computational subroutines available on Silicon Graphics and Cray computers

[41]. CHEMEQ performed the required calculations in approximately one-sixth the time required by DEBDF,

which is coincidental^ the same factor seen in the detonation comparison versus METAN1. No extensive

accuracy studies have been performed to ensure that the comparison was fair. For example, the accuracy

parameters for CHEMEQ2 and DEBDF were simply set to the same value, even though the two codes do

not use these parameters in exactly the same way.

36

7 Summary

CHEMEQ2 is a general purpose integrator for a specific type of equations, namely those that are reasonably

represented by the form in Eq. (1). CHEMEQ2 employs a very low overhead, moderately accurate, low-order

technique. To obtain results for most physical models with an acceptable degree of accuracy, CHEMEQ2 can

be extremely efficient. In many areas where problems are so computationally expensive they seem impossible

to do by other methods, CHEMEQ2 gives accurate results in a reasonable amount of time. CHEMEQ2 can

also be employed in the development of chemical or mathematical models when efficiency is important, but

obtaining very precise answers may require extensive computational expense. CHEMEQ2 is optimized to

provide three or four significant digits accurately, not eight, but this high level of accuracy can be reached

with an appropriate timestep criterion and enough corrector iterations.

CHEMEQ2's forte lies in the solution of the stiff ordinary differential equations associated with chemically

reactive flow problems. Here the reaction sources are split off from the hydrodynamic part of the equations

and solved separately for each hydrodynamic timestep and at each grid point. The moderate accuracy of

the methods used to solve the hydrodynamic equations suggest that the application of a more sophisticated

technique, rather than a low-order, low overhead method like CHEMEQ2, would waste valuable computer

time and could possibly render the problem impossible.

A potential user must be aware that CHEMEQ2 is not completely user-proof or problem-independent

and cannot always be used as a black box. The method is not identically conservative, and the minimum

values should be chosen with some thought since they can become sources of spurious errors if not chosen

small enough initially. Although CHEMEQ2 overcomes some stability problems in the original algorithm,

it may still require the use of the stability check described in Section 4.2. The user is referred again to

Section 5.4 for practical information regarding the use of CHEMEQ2.

Since CHEMEQ2 uses a convergence-dependent algorithm and an adaptive timestep, the overall timing

will be strictly problem-dependent. One factor will be the coupling between the relaxation times of the

equations. The most expensive operation in the algorithm is the derivative function evaluations, of which

there is one required in the predictor step, and one for each corrector iteration. If CHEMEQ2 is applied as

37

designed, the subroutine can solve large systems of stiff ordinary differential equations very efficiently.

8 Acknowledgements

This work was funded in part by the Office of Naval Research, and in part by a Department of Defense High

Performance Computing Modernization Office (HPCMO) Common High Performance Computing Software

Support Initiative (CHSSI) program within the Computational Fluid Dynamics Core Technology Area. It

was completed while D. Mott was an NRC/NRL Postdoctoral Research Associate. The authors would like to

thank Prof. Bram van Leer for his guidance and insight during the course of this research. The authors would

also like to thank T.R. Young, Jr. and J.P. Boris, who developed the asymptotic method in CHEMEQ, for

their help and advice, as well as G. Patnaik, who streamlined CHEMEQ for workstation use and performed

the hydrogen-air flame calculations discussed in Section 6.3.

38

References

[1] T. R. Young and J. P. Boris, "A Numerical Technique for Solving Ordinary Differential Equations

Associated with the Chemical Kinetics of Reactive-Flow Problems." J. Physical Chemistry, 81, 2424

(1977).

[2] T.R. Young, Jr., "CHEMEQ — A Subroutine For Solving Stiff Ordinary Differential Equations." NRL

Memorandum Report No.4091 (1980).

[3] J.D. Hoffman, Numerical Methods for Engineers and Scientists.McGvzw-RiM, Inc., New York, 1992.

[4] J.D. Lambert, Numerical Methods for Ordinary Differential Systems; The Initial Value Problem. John

Wiley fc Sons, Chichester, England, 1991.

[5] E.S. Oran, J.P. Boris, Numerical Simulation of Reactive Flow. Elsevier Science Publishing Co., Inc.,

New York, 1987.

[6] E.S. Oran, T.R. Young, J.P. Boris. "Application of Time-Dependent Numerical Methods to the De-

scription of Reactive Shocks." Proceedings of the 17th Symposium (International) on Combustion, p.

43, the Combustion Institute, Pittsburgh, PA, 1979.

[7] K. Kailasanath, E.S. Oran, J.P. Boris. "A Theoretical Study of the Ignition of Premixed Gasses."

Combustion and Flame, 47, 173, 1982.

[8] E.S. Oran, T.R. Young, J.P. Boris, and A. Cohen. "Weak and Strong Ignition: I. Numerical Simulations

of Shock Tube Experiments." Combustion and Flame, 48, pp. 135-148, 1982.

[9] E.S. Oran and J.P. Boris. "Weak and Strong Ignition: II. Sensitivity of the Hydrogen-Oxygan System."

Combustion and Flame, 48, pp. 149-161, 1982.

[10] K. Kailasasanth and E. S. Oran. "Ignition of Flamelets behind Incident Shock Waves and the Transition

to Detonation." Combustion Science and Technology, 34,345-361, 1983.

39

[11] G. A. Doschek, J.P. Boris, C,C. Cheng, J.T. Mariska, and E.S. Oran. «Numerical Simulation of Cooling

Coronal Flare Plasma." The Astrophysical Journal, 258, 373, 1982.

[12] C.-C. Cheng, E.S. Oran, G. A. Doschek, J.P. Boris, and J.T. Mariska. «Numerical Simulations of Loops

Heated to Solar Flare Temperatures: I. Gasdynamics." The Astrophystcal Journal, 265, 1090-1102,

1983.

[13] C.-C. Cheng, E.S. Oran, G. A. Doschek, J.P. Boris, and J.T. Mariska. «Numerical Simulations of Loops

Heated to Solar Flare Temperatures: II. X-Ray and UV Spectroscopy" The Astrophysrcal Journal, 265,

1103-1119,1983.

[14] J.W. Weber, Jr., E.S. Oran, J.D. Anderson, Jr., and G. Patnaik. «Load Balancing and Performance

Issues for the Data Parallel Simulation of Stiff Chemical Nonequilibrium FIow.MM^ Journal, 35, PP.

147-163, 1998.

[15] E. S. Oran, J. W. Weber, Jr., E. I. Stefaniw, M. H. Lefebvre, and J. D. Anderson, Jr. «A Numerical Study

of a Two-Dimensional H2-02-Ar Detonation Using a Detailed Chemical Reaction Model." CombusUon

and Flame 113, pp. 147-163, 1998.

[16] G. Patnaik and K. Kailasanath. «Numerical Predictions of the Cell-Split Limit in Lean Premixed

Hydrogen-Air Flames in Microgravity," presented at the Joint Meeting of the Umied Stales Secüons of

the Combustion Institute, Washington, D.C., March 1999.

[17] K. Kailasanath, G. Patnaik, and C. Li. «Computational Studies of Pulse Detonation Engines: A Sta-

tus Report," AIAA 99-2634, and presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion

Conference and Exhibit, June 1999.

[18] G. Patnaik and K. Kailasanath, «Outflow Boundary Conditions for Pulse Detonation Engines," pre-

sented at the 8th SIAM Conference on Numerical Combustion, March 2000.

[19] D.R. Mott. «New Quasi-Steady-State and Partial-Equilibrium Methods for Integrating Chemically Re-

acting Systems." Ph.D. Thesis, The University of Michigan, April 1999.

40

[20] D.R. Mott, E.S. Oran, and B. van Leer. "A Quasi-Steady-State Solver for the Stiff Ordinary Differential

Equations of Reaction Kinetics," Journal of Computational Physics, 164, pp. 407-428, (2000).

[21] L. O. Jay, A. Sandu, F. A. Porta, and G. R. Carmichael, "Improved Quasi-Steady-State-Approximation

Methods for Atmospheric Chamistry Integration." SIAM Journal of Scientific Computing, Vol. 18, No.

1, pp. 182 - 202 (1997).

[22] J. G. Verwer and D. Simpson, "Explicit methods for stiff ODEs from atmospheric chemistry." Applied

Numerical Mathematics, 18, pp. 413 - 430 (1995).

[23] J. G. Verwer and M. van Loon, "An evaluation of explicit Psuedo-Steady-State Approximation Schemes

for Stiff ODE Systems from Chemical Kinetics." Journal of Computational Physics, 113, 347 - 352

(1994).

[24] K. Radhakrishnan and D. T. Pratt. "Fast Algorithm for calculating Chemical Kinetics in Turbulent

Reacting Flow," Combustion Science and Technology, Vol. 58, pp. 155-176, 1988.

[25] A. C. Hindmarsh. "LSODE and LSODEI, Two New Initial Value Ordinary Differential Equation

Solvers." ACM SIGNUM Newsletter, vol. 15, no. 4, 1980, pp. 10-11.

[26] A. C. Hindmarsh. "ODEPACK: A Systemized Collection of ODE Solvers." Scientific Computing. R.

S. Stepleman, et al., eds., North Holland Publishing Company, Amsterdam, 1983, pp. 55-64. (Also

UCRL-880-07, Lawrence Livermore Laboratory, Livermore, CA, 1993).

[27] C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice Hall, Engle-

wood Cliffs, New Jersey, 1971).

[28] K. Radhakrishnan. "New Integration Techniques for Chemical Kinetic Rate Equations. I. Efficiency

Comparison," Combustion Science and Technology, Vol. 46, pp. 59-81, 1986.

[29] R. Lorenzini and L. Passoni. "Test of numerical methods for the integration of kinetic equations in

tropospheric chemistry." Computer Physics Communications 117 (1999), pp. 241-249.

41

[30] C. J. Avro. «CHEMSODE: a stiff ODE solver for the equations of chemical kinetics." Computer Phystcs

Communications 97 (1996), pp. 304-314.

[31] F. A. Williams, Combustion Theory, The Fundamental Theory of Chemrcally Reacting Systems, 2nd

edition, Benjamin/Cummings Publishing Company, Menlo Park, California, 1985.

[32] S. H. Lam and D. A. Goussis, «The CSP Method for Simplifying Kinetics." International Journal of

Chemical Kinetics, 26, pp. 461 - 486, 1994.

[33] G. Patnaik, K.J.Laskey, K. Kailasanath, E.S. Oran, and T.A. Brun, «FLIC - A Detailed, Two-

Dimensional Flame Model." NRL Memorandum Report No.6555 (1989).

[34] M. Frenklach, H. Wang, and M. J. Rabinowitz, Optimization and Analysis of Large Chemical Kinetic

Mechanisms Using the Solution Mapping Method - Combustion of Methane, Progress tn Energy and

Combustion Science .18, pp. 47-73 (1992).

[35] U. Uphoff, D. Hind, P. Roth, A Grid Refinement Study for Detonation Simulation with Detailed

Chemistry, Proc. of 6th Int. Conf. on Num. Combustion, New Orleans, March 4-6, 1996.

[36] P. Deuflhard, U. Nowak, and Ü. Poehle. Scientific Software Group, Konrad-Zuse-Zentrum fuer Infor-

mationstechnik Berlin, 1989.

[37] P. Deuflhard, A Semi-Implicit Midpoint Rule for Stiff Systems of Ordinary Differential Equations,

Numeriche Mathematik 41, 373 - 398, 1983.

[38] P. Deuflhard, Order and Stepsize Control in Extrapolation Methods, Numenche Mathematic 41 (1983),

399-422.

[39] P. Deuflhard, Uniqueness Theorems for Stiff ODE Initial Value Problems, Konrad-Zuse-Zentrum fuer

Informationstechnik Berlin, Preprint SC-87-3 (1987).

[40] J. P. Boris, Alexandra M. Landsberg, Elaine S. Oran, and John H. Gardner. «LCPFCT - A Flux-

Corrected Transport Algorithm for Solving Generalized Continuity Equations." Memorandum Report

6410-93-7192, Naval Research Laboratory, 1993.

42

[41] W. H. Vandevender and K. H. Haskell, The SLATEC mathematical subroutine library, SIGNUM

Newsletter, 17, 3 (September 1982), pp. 16-21.

43

9 Appendix A - CHEMEQ2 Variable List

FORTRAN
variable

__ Table 9: Variable listing and descriptions.
Type/Scope Same As Description

alpha
ascr
d(i)
dt
dto

dtc
dtg
dtmin
dtmn

R/L
R/L
R/A
R/L
R/L

R/L
R/A
R/L
R/A

epscl R/L

eps R/L

epsmax R/A

epsmin R/A

epsmn R/A
epsmx R/A
gcount I/L

gsub E/A
l I/L
iter I/L
itermax I/A
itennx R/A
lo I/L
n I/A
nd I/L

ns I/A
prt R/A
q(i) R/A
qs(i) R/A

qt R/A
rcount I/L

Type: R = Real, I =

a, Eq. (7)

Piyt, Eq. (1)
A*

1/epsmin

<r, Eq. (48)

c from Eq. (47)

£ from Eq. (46)

«.-, Eq. (1)
<??, Eqs. (35),
(38)
qi, Eq. (38)

solution parameter used in update
scratch (temporary) variable
loss rate

chemical timestep used by the integrator

stores timestep; used to scale rtaus when timestep
is reduced

diagnostic value printed when At < dtmin
global timestep; range of integration
minimum timestep allowed
sets dtmin via CHEMSP

intermediate variable used to avoid repeated
divisions

maximum correction term, finally scaled by
1/epsmin

repeat timestep if correction is greater than
epsmax*epsmin*y(i) for any i

accuracy parameter for determining the next
timestep

used to set epsmin via CHEMSP
used to set epsmax via CHEMSP

counter for calls to gsub since the last call to
CHEMCT

source term subroutine; supplies d(i) and q(i)
index

counter for corrector iterations
number of corrector iterations to perform
used to set itermax via CHEMSP
unit number for output
number of equations integrated
dimension of species arrays; maximum number of
species

number of entries in ymin reset via CHEMSP call
nonzero value supresses output from CHEMSP
production rate
initial production rate

a-weighted average of q

counter for steps redone since the last call to
CHEMCT

Integer, E = External; Scope: L = Strictly Local, A^Pgedas Argument.

44

Table 9 Continued
FORTRAN Type/Scope Same As
variable
rswitch R/L 5.9659

rtau(i) R/L At/Ti
rtaub R/L plAt = At/n
rtaui R/L At/Ti

rtaus(i) R/L At/rf

rteps R/L ^*
scri R/L —
scr2 R/L —
scrarray R/L —
scrtch R/L —
sqreps R/A 5V£
stab R/L —
tfd R/L —

Description

tgcnt

tmk
tn

tnot
trcnt

ts

I/L

R/A
R/A

R/A
I/L

R/A

tstart R/A

y(i) R/A
yO(i) R/A

yl(i) R/A
yml(i) R/L
ym2(i) R/L
ymin(i) R/L
ymin(i) R/A
ys(i) R/L

Type: R = = Real, I

t-t"

yf from Eq. (2)

»?
%

.<:('-1)

,<'-2)
2/,

Eqs.
(36)

(35)
from
and

value of At/r used to switch between Eqs.(39) and
(41) when Pade (a) is used
ratio of timestep to timescale
At times average p from Eq. (37)
holds rtau(i) to avoid multiple array references
ratio of timestep to initial timescale for current
timestep
estimate for y/a in Eq. (50)
scratch (temporary) variable
scratch (temporary) variable
scratch (temporary) variable array
scratch (temporary) variable
parameter used to calculate initial timestep

WAyf^-^WßAyf^; see Eqs. 52) and (53)
round-off parameter used to determine when inte-
gration is complete
total number of calls to gsub for all global
timesteps
call identifier for CHEMCT
current value of the independent variable relative
to the start of the global timestep
used to set tstart via CHEMSP
total number of steps redone for all global
timesteps
independent variable at the start of the chemical
timestep
independent variable at the start of the global
timestep
species concentrations array
initial concentrations for the global timestep
passed to CHEMEQ
predicted value from Eq. (35)
previous corrector iterate; see Eq. (51)
previous corrector iterate; see Eq. (51)
minimum concentration allowed for species i
set ymin(i) via CHEMSP
initial concentrations for the chemical timestep

Integer, E = External; Scope: L = Strictly Local, A = Passed as Argument

45

10 Appendix B: Code Listings

10.1 CHEMEQ2 Code Listing

subroutine chemeq2(dtg, gsub, n, y)
c

cd* ************** * * * + * „ + + + + + + + + + + + + + +

cd

cd chemeq2(dtg, gsub, n, y)
cd

cd original chemeq development:

cd originators: t.r. young nrl 1982

cd vax version: t.r. young nrl code 4040 may i983
cd Workstation: g. patnaik berkeley research jun 1995
cd

cd chemeq2 development: d.r. mott nrl code 6404 may 1999
cd

cd

cd Description: Subroutine chemeq2 solves a class of "stiff" UU1:

cd associated with reactive flow problems that cannot be readily

cd solved by the standard classical methods. In contrast to the
cd original chemeq subroutine, this version uses the same

cd quasi-steady-state update for every species regardless of the
cd timescale for that species. An adaptive stepsize is chosen to
cd give accurate results for the fastest changing quantity, and a
cd stability check on the timestep is also available when the
cd corrector is iterated.

cd

ODEs

cd

cd NOTE: The accuracy-based timestep calculation can be augmented
cd with a stability-based check when at least three corrector
cd iterations are performed. To include this check, "uncomment"

cd the lines that start with "D", or use the compiler flag "-d_lines"
cd if available to compile the code including these lines. If the

cd lines are manually uncommented, the continuation characters

cd must be placed in the correct column. For most problems, the

cd stability check is not needed, and eliminating the calculations
cd and logic associated with the check enhances performance
cd

cd The routine assumes that all of the integrated quantites and the
cd time step are positive.
cd
cd
cd dtg reai
cd
cd

argument list definition (name, type, description, input vs. output):

the interval of integration or the
range of the independent variable.
0.0 <= t <= dtg. (global timestep)

Cd gsub real the name of the derivitive function i
evaluator subroutine.

cd n integer the number of equations to be i

integrated, an error exisis if n is
c greater than nd set by the parameter

statement.
Cd y(n) real the initial values at call time i/o

and the final values at return time.

AC)

cd

cd Language and limitations: This subroutine is written in standard

cd FORTRAN 77. For high accuracy, this routine should be compiled

cd using whatever "double precision" flag is appropriate for the

cd platform being used (such as "f77 -r8")

cd

cd Entry points: Four entry points are provided for flexibility and

cd optimum control. This structure was maintained from the original

cd chemeq subroutine to ensure compatiability with previous

cd applications that use chemeq.

cd

cd chemeq2: advances the equations the given increment 'dtg'.
cd

cd chemct: informative, prints the values of the indicative

cd counters listed below;

cd 1. the number of derivative function evaluations.

cd 2. the number times the integration step was restarted

cd due to nonconvergence of the predictor-corrector

cd scheme.
cd

cd chemsp: provides the user with the option to reset the most

cd important control parameters.
cd

cd chempr: informative, prints out internal variables for diagnostic

cd purposes.
cd

cd subroutines referenced:
cd

cd gsub; whose actual name and definition are supplied by the user

cd is called to obtain the derivitive functions.
cd

cd call gsub(y, q, d, t)

cd argument list to gsub;
cd y(n) real current values of the dependent i
cd variable.

cd q(n) real calculated formation rates. o

cd d(n) real calculated loss rates. o

cd t real current value of the independent i
cd variable.
cd

cd eherner: Called whenever an error is detected. Currently the

cd only error recognized is a time step that is too small.
cd

cd call chemer(y, n)

cd argument list to eherner; (same definition as "chemeq2").
cd
cd* **********************************

c

implicit none
integer nd

parameter (nd = 10)

47

external gsub

integer n, ns, lo, i

integer iterraax, iter, itermx
c

c the following are counters (this call & total) for gsub calls
c and timestep repeats
c

integer gcount, rcount, tgcnt, trcnt
c

real ts, tn, tfd, tmk
real y(n)

real ymin(nd), ymn(nd)

real q(nd), d(nd), rtaus(nd), yl(nd)

real ys(nd), yO(nd), rtau(nd)
real alpha, qs(nd)

real scri, scr2> scrarray(nd)

real epscl, dtg, dtmin, sqreps, tstart, dt, dto
real epsmax, epsmin, rswitch
real epsmx, epsmn, dtmn, tnot, prt
real scrtch, ascr, eps

real rtaui, rtaub, qt, pb, dtc, rteps
c

c yml, ym2, and stab are used only for the stability check on dt
D real yml(nd), ym2(nd), stab

data gcount, rcount, tgcnt, trcnt/4*0/
data itermax/1/, epscl/100.0/

data tfd/1.000008/, dtmin/1.0e-15/, sqreps/0.50/
data tstart, dt/2*0.0/, tn/0.0e+00/, q/nd*0.0/

data epsmax/10.0/, lo/16/, epsmin/1.0e-02/, d/nd*0.0/
data rswitch/ 5.965900 /

c

c

c rswitch for 4-4 pade: 5.9659
c

cd check input parameters.

if(n .gt. nd) then

write(lo, 1002) n, nd

1002 format(5(/),'from-chemeq2- : no. of eq.s requested is too>
large'/' requested C,i5,'), max. allowed (',i5,')')
stop

end if
c

c initialize the control parameters.
110 tn = 0.0e+00

c

c store and limit to 'ymin' the initial values,
do i = 1, n

q(i) = 0.0
d(i) = 0.0
y0(i) = y(i)

y(i) = max(y(i), ymin(i))
end do

48

c evaluate the derivitives of the initial values.

call gsub(y, q, d, tn + tstart)

gcount = gcount + 1

c

c estimate the initial stepsize.

c

c strongly increasing functions(q >» d assumed here) use a step-

c size estimate proportional to the step needed for the function to

c reach equilibrium where as functions decreasing or in equilibrium

c use a stepsize estimate directly proportional to the character-

c istic stepsize of the function, convergence of the integration

c scheme is likely since the smallest estimate is chosen for the
c initial stepsize.

scrtch = 1.0e-25

do i = 1, n

ascr = abs(q(i))

scr2 = sign(l./y(i),.l*epsmin*ascr - d(i))
scrl = scr2 * d(i)

scrtch = max(scrl,-abs(ascr-d(i))*scr2,scrtch)
end do

dt = min(sqreps/scrtch,dtg)
c

c the starting values are stored.
100 ts = tn

c

do i=l,n

rtau(i) = dt*d(i)/y(i)
ys(i) = y(i)

qs(i) = q(i)

rtaus(i) = rtau(i)
end do

c
c

c find the predictor terms.
101 continue

c
do i = l,n

c

c prediction
c

rtaui = rtau(i)
c

c note that one of two approximations for alpha is chosen:

c 1) Pade b for all rtaui (see supporting memo report)
c or

c 2) Pade a for rtaui<=rswitch,

c linear approximation for rtaui > rswitch

c (again, see supporting NRL memo report (Mott et al., 2000))
c

c Option 1): Pade b

49

c

alpha = (180.+rtaui*(60.+rtaui*(ll.+rtaui)))
& / (360. + rtaui*(60. + rtaui*(12. + rtaui)))

c

c Option 2): Pade a or linear
c

c if(rtaui.le.rswitch) then

c alpha = (840.+rtaui*(140.+rtaui*(20.+rtaui)))
c & / (1680. + 40. * rtaui*rtaui)
c else

c alpha = l.-l./rtaui
c end if
c

scrarray(i) = (q(i)-d(i))/(l.o + alpha*rtaui)
end do

c

iter = 1

do while(iter.le.itermax)

c limit decreasing functions to their minimum values.
do i= l,n

D ym2(i) = yml(i)

D yml(i) = y(i)

y(i) = max(ys(i) + dt*scrarray(i), ymin(i))
end do

if(iter.eq.l) then
c

c the first corrector step advances the time (tentatively) and

c saves the initial predictor value as yl for the timestep check later
tn = ts + dt
do i=l,n

yl(i) = y(i)
end do

end if
c

c evaluate the derivitives for the corrector,
c

call gsub(y, q, d, tn + tstart)
gcount = gcount + 1
eps = 1.0e-10

do i = l,n

c

rtaub = -5*(rtaus(i)+dt*d(i)/y(i))

c Same options for calculating alpha as in predictor:
c

c Option 1): Pade b

c

c

alpha = (180.+rtaub*(60.+rtaub*(ll.+rtaub)))
/ (360. + rtaub*(60. + rtaub*(12. + rtaub)))

50

c Option 2): Pade a or linear

c

c if(rtaub.le.rswitch) then

c alpha = (840.+rtaub*(140.+rtaub*(20.+rtaub)))

c & / (1680. + 40.*rtaub*rtaub)

c else

c alpha = l.-l./rtaub

c end if

qt = qs(i)*(l. - alpha) + q(i)*alpha

pb = rtaub/dt

scrarray(i) = (qt - ys(i)*pb) / (1.0 + alpha+rtaub)

c

end do

c

iter = iter + 1

c

end do

c
c calculate new f, check for convergence, and limit decreasing

c functions, the order of the operations in this loop is important,

do i = l,n

scr2 = max(ys(i) + dt*scrarray(i), 0.0)

scrl = abs(scr2 - yl(i))

y(i) = max(scr2, ymin(i))

D ym2(i) = yml(i)
D yml(i) = y(i)

c
if(.25*(ys(i) + y(i)).gt.ymin(i)) then

scrl = scrl/y(i)
eps = max(.5*(scrl+

& min(abs(q(i)-d(i))/(q(i)+d(i)+1.0e-30),scrl)),eps)

c
end if

end do

eps = eps*epscl

c
c print out dianostics if stepsize becomes too small.

if(dt .le. dtmin + 1.0e-16*tn) then

write(lo, 1003) dt, tn, dtmin
do i = l,n

dtc = epsmin*y(i)/(abs(q(i)-d(i)) + 1.0e-30)

write(lo, 1004) q(i), d(i), y(i), rtau(i), dtc,
& q(i)-d(i),ys(i), y0(i), ymin(i)

end do

1003 format('l chemeq error; stepsize too small ! ! !', /,
1 ' dt = ', lpel0.3, ' tn = ', d25.15,
2 ' dtmin = ',el0.3, //, llx, 'q', lOx, 'd', lOx, 'y\

3 8x, 'rtau*, 8x, 'dtc', 7x, 'q - d',7x, 'ys',

51

c

c

4 9x, 'yO\ 8x, 'ymin')
1004 format(5x, lpl2ell.3)

dt = dtg - ts

dt = min(dtmin, abs(dt))

call error diagnostic routine
call chemer

end if

check for convergence.

c The following section is used for the stability check
D stab = 0.01

D if(itermax.ge.3) then
D do i=l,n
D

D
stab = max(stab, abs(y(i)-ymi(i))/

fe (abs(yml(i)-ym2(i))+l.e-20*y(i)))
D end do
D endif

if(eps .le. epsmax
D & -and.stab.le.l.

&) then

c

c

C
c
c

c

Valid step. Return if dtg has been reached.

if(dtg .le. tn*tfd) return
else

c Invalid step; reset tn to ts

tn = ts
end if

perform stepsize modifications,

estimate sqrt(eps) by newton iteration.

rteps = 0.5*(eps +1.0)

rteps = 0.5*(rteps + eps/rteps)
rteps = 0.5*(rteps + eps/rteps)

dto = dt

dt = min(dt*(1.0/rteps + .005), tfd*(dtg - tn)
& ,dto/(stab+.001)
&)

begin new step if previous step converged.

if(eps .gt. epsmax

& .or. stab, gt. 1
&) then

52

rcount = rcount + 1

c

c After an unsuccessful step the initial timescales don't

c change, but dt does, requiring rtaus to be scaled by the

c ratio of the new and old timesteps.

c
dto = dt/dto

i = 1

do while(i.le.n)

rtaus(i) = rtaus(i)*dto

i = i+1
end do

c
c Unsuccessful steps return to line 101 so that the initial

c source terms do not get recalculated,

c

goto 101
end if

c
c Successful step; get the source terms for the next step

c and continue back at line 100

c
call gsub(y, q, d.tn + tstart)

gcount = gcount + 1

go to 100

c
entry cheract (tmk)

c
c
cd* **********************************

cd
cd chemct (tmk)

cd write out the values of the various indicative counters that the

cd program keeps.

cd
cd argument list definition:
cd tmk real a floating point number printed i

cd to identify the call.

cd
cd output variable definition:

cd tmk real floating point identifier.
cd gcount integer number of derivative subroutine calls

cd since the last call.

cd rcount integer number of times stepsize was reduced

cd since last call.

cd tgcnt integer total of gcount to this call.

cd trcnt integer total of rcount to this call.
cd
cd* **********************************

c

53

1000

c

c

c

c

c

cd*

cd

cd
cd

cd
cd
cd
cd
cd
cd
cd
cd

cd

cd
cd

cd

cd

cd

cd
cd

cd

cd
cd
cd
cd

cd
cd

cd

cd
cd
cd

cd
cd

tgcnt = tgcnt + gcount

trcnt = trcnt + rcount

print out indicative counters.

writeQo, 1000) tmk, gcount, rcount, tgcnt,
trcnt

format(' chemeq indices; tmk = ', lpel0.3,

' gcount, rcount = ', 2i7, > totals: >, 2i7)

reset counters,

gcount = 0

rcount = 0

return

entry chemsp(epsmn, epsmx, dtmn, tnot, itermx, ns, ymn, prt)

************ * * * * * « # + + + + + + + + + + + + + ^

chemspCepsmn, epsmx, dtmn, tnot, itermx, prt)

reset any local control parameters if their respective input
values are greater than zero, default values are used if the
input values are zero or less repectively.

argument
epsmn

epsmx

list definition
real

real

dtmn

tnot

itermx

ns

ymn(nd)

prt

the maximum relative error allowed i

for convergence of the corrector step.
default value: 1.0e-02

this number provides the basis for i

deciding weather convergence can be
achieved with out added stepsize

reduction, if eps/epsmin is greater
than epsmx further reduction is
applied.

default value : 10.0

the smallest stepsize allowed. ±
default value: 1.0e-15

the initial value of the independent i
variable t.

default value: 0.0

i number of times the corrector is applied
default value: 1

integer number of entries in ymin to reset i

real

real

real

real

minimum values allowed for y ±
default value: 1.0e-20

controls the output of chemsp. any i

non zero value suppresses all print
output from this entry.

S4

cd
cd* **********************************

c

epsmin = 1.0e-02

if(epsmn .gt. 0.0)epsmin = epsmn

if(epsmn .gt. 0.0)sqreps = 5.0*sqrt(epsmin)

epscl = 1.0/epsmin

epsmax = 10.0

if(epsmx .gt. 0.0)epsmax = epsmx

dtmin = 1.0e-15

if(dtmn .gt. 0.0)dtmin = dtmn

tstart = tnot

itermax = 1

if(itermx.gt. 0) itermax = itermx

do i=i,ns

ymin(i) = l.e-20

if(ymn(i).gt.O.) ymin(i) = ymn(i)

end do

c
c print new values of control parameters.

if(prt .eq. 0.0) then
write(lo, 1001) epsmn, epsmx, dtmn, tnot, itermx

write(lo, 1005) ns
if (ns.gt.0) write(lo,1006) (ymin(i), i=l,ns)

end if

1001 formatC initalize "chemeq2" via "chemsp"', /,
' epsmn, epsmx, dtmn, tnot, itermx = ', Ip5gl0.3)

1005 formatC ns = ',15)

1006 format(' ymin: ' ,50el2.3)

return

c

c

c
entry chempr (y, n)

c
c
c<i* **********************************

cd
cd chempr (y, n)

cd
cd chempr may be called whenever an error occurs that can be
cd attributed to the results of chemeq. a partial set of the internal

cd variables is printed as a diagnostic.

cd
cd argument list definition:
cd y(n) r current values of the dependent variable. i
cd n i the number of entries in y and ymin. i

cd
cd* **********************************

c

45

write(lo, 1003) dt, tn, dtmin
do 45 i = i,n

dtc = epsmin*y(i)/(abs(q(i) - d(i)) + 1.0e-30)
writeQo, 1004) q(i), d(i), y(i), rtau(i),

dtc, q(i)-d(i), ys(i), y0(i), ymin(i)

c

c

c

c

1001

return
end

subroutine chemer

diagnostic routine for stiff o.d.e. solver -chemeq-

print 1001

format(5(/), • library version of -chemer- called.', /,

* users may supply their own version for diagnostics.'', /,
' no arguments are required.', /,

'program will continue resetting the step size to min-', /
'lmums if a normal return is made.', //,

(stop 69) executed from library version of -chemer-')

stop 69
end

56

10.2 Example Driver Code and Source Term Subroutines

c
c
c
c
c
c
c
c
c
c

c

c

c
c
c
c

PROGRAM CESIUM

This is the driver program for the seven-species cesium

mechanism test problem. The code integrates the system

MXCASE times using differnt values of the chemeq2 variable

epsmin (set by passing an entry from array EPS through

CHEMSP before each integration).

PROGRAM SPECIFICATIONS.

REAL DSEC

REAL Y(10), YF(10), YMIN(iO), YI(10), EPSIL(IO), EPS(15)

INTEGER SPSYM(7)

For this example, the external subroutine that calculates the

source terms is called CSDFE.

EXTERNAL CSDFE

C

C
1000

1001

1002

1003

1004

1005

1006

1007

C
C

C

C

DATA YMIN/10*1.0E-20/, MXCASE/9/, LO/16/

DATA SPSYM/'02-', 'CS+', 'CS', 'CS02', '02', 'N2', 'NE'/
DATA EPS/

.1, .05, .01, .005,

.001, .0005, .0001, .00005,

.00001, .000005, .000001,
5.e-7, l.e-7,5.e-8,l.e-8

,5.e-9, l.e-9,5.e-10,l.e-10

/

FORMAT('CASE NO. ', 15, ' PARAMETERS;', /,

' CONVERGENCE PARAMETER EPS = ', 1PE10.3, /,

• INNER LOOP LENGTH;', 15)
F0RMAT(/, ' SPECIE Y - INITAL Y - FINAL ',

' Y - SOLUTION REL ERR')
F0RMAT(5X, A4, 1P3E15.6, E10.3)

F0RMAT(/, ' T - INITIAL = (', 1PE10.3, ') T - FINAL = (',
E10.3, ')')
F0RMAT(/' INTEGRATION STATISTICS;')

FORMATC CPU TIME USED FOR INTEGRATION;', 1PE10.3,

' SEC, CPU TIME NORMALIZED;', 18)

FORMATC SUM OF THE RELATIVE ERRORS SQUARED; ', 1PE10.3)
F0RMAT(/)

Note that the timing routines included may not work on

all systems. Extra timing options are included as comments.

REAL+4 dtime, delta, tarray(2)

integer tnorm

EXTERNAL dtime
delta = 1.

C

C

C INITIALIZE CONTROL PARAMETERS.
C

C TSCALE is simply a normalization factor for the timing

C results. It can be used to compare results from differnt

C machines (by setting it to the time required for that

C machine to solve a standard problem of some sort) or to
simply make the timing results more "friendly "
TSCALE = 1.0/1024.

C

C INLP allows the user to subdivide the interval over which
C each test is run. " ~ ■ —
C

C

C

C

C

C
C

each test is run. For INLP=1, CHEMEQ2 is sent the full

interval TF-TI (specified below) as the global timestep.
INLP =1 ° r

For this particular test, the electron number density is not

C integrated. The other five reacting species are integrated,
C and the electron density is found through charge conservation
C This calculation is done within CSDFE. Therefore NA = 5 is
C the number of equations that are integrated, but NS = 7 is the

C number of species. Species to be integrated must be placed in
C first NA positions within the Y array. CHEMEQ2 only works with
C these first NA entries since NA is passed in the argument list
C below, but all NS values are available to and used by CSDFE

NS = 7

NA = 5

"TI" - INITIAL TIME, "TF" - FINAL TIME
TI = 0.0

C
C
C

C 02-

TF = 1000.0

DELTAT = (TF - TI)/INLP

C

C CS+

STORE INITIAL(TI = 0.0) AND FINALT(F = 1000.0) VALUES.

YI(l) = 5.200E+02

YF(1) = 2.59139492061D+04

C

C CS

YI(2) = 6.200E+02

YF(2) = 7.55718460300D+04

YI(3) = 1.000E+12

YF(3) = 1.53194051722D+03

58

CS02

YI(4) = 0.

YF(4) = 9.99999923516D+11

c
c 02

YI(5) = 3.600E+14

YF(5) = 3.59000000051D+14

c
c N2

YI(6) = 1.400E+15

YF(6) = 1.40000000000D+15

c
c NE

YI(7) = 1.000E+02

YF(7) = 4.96578968239D+04

c
c LOOP OVER THE TEST CASES.

DO 30 ICASE = 1, MXCASE

WRITE(LO, 1000) ICASE, EPS(ICASE), INLP

CALL CHEMSP(EPS(ICASE), 0., 0., TI, 5, ns, ymin, 0.)

CPUT = 0.0

C

C RESET "Y" TO INITIAL VALUES "YI".

DO I = 1,NS

Y(I) = YI(I)
end do

C
C SET TIMER.

C Tl = SECNDS(O.O)
delta = dtime(tarray)

C

C INNER LOOP TO DETERMINE OVERHEAD OR RELATIVE STARTING EFFECIENCY

C OF ITEGRATION SCHEME BEING TESTED.
DO ISTEP = l.INLP

C

C CALL INTEGRATOR.
CALL CHEMEq2(DELTAT, CSDFE, NA, Y)

C
end do

C

C CALCULATE CPU TIME USED IN THE INTEGRATION PROCESS.
delta = dtime(tarray)

C DSEC = SECNDS(Tl)

DSEC = tarray(l)

C DSEC = delta

CPUT = CPUT + DSEC

TNORM = INT(CPUT/TSCALE + .5)

C Calculate final electron density from densities of other charges species
Y(7) = Y(2) - Y(l)

C

59

C CALCULATE RELATIVE ERROR.
DO I = l.NS

EPSIL(I) = ABS(Y(I) - YF(I))/MIN(Y(I) , YF(I))
end do

SUM = 0.0

DO I = 1,NS

SUM = SUM + EPSIL(I)**2
end do

C Root-mean-square error is calculated using ns-1 (rather than ns)
C since N2 is inert.
c

sum = sqrt(sum/real(ns-l))
c

C

C PRINT RESULTS.

WRITE(L0, 1003) TI, TF

WRITE(LO, 1001)

DO 15 I = 1,NS

15 WRITECLO, 1002) SPSYM(I), YI(I), YF(I), Y(I), EPSIL(I)
WRITE(L0, 1004)

WRITE(L0, 1006) SUM

WRITE(LO, 1005) CPUT, TNORM
WRITE(*,699) EPS(ICASE),

& CPUT, TNORM, sum

699 format(lx,25HEPS, time, ticks, error: ,E7.I,2x,el0.4 2x
& I5,2x,el0.4)

WRITE(L0, 1007)
CALL CHEMCT(TF)

30 CONTINUE
STOP 69

END

subroutine csdfe(y, q, d, t)
c
cd **********

cd
cd

cd

cd description:

cd derivative function evaluator(gsub) for an atmospheric chemical

cd relaxation test problem involving cesium and cesium ions, format-
ed ion and loss rates are calculated for this set of "stiff ordinary
C
H J1 ?flal ec*uations" tha* was suggested by by d. edelson of
cd bell laboratories.
cd

cd argument list definitions:

^ y(i) r current values of the functions plus the i/o
extra data at the end of the array that may be
passed back and forth between "csdfe" and the
main program, locations in y(i) which represent
the functions being advanced should not be
tampered with here.

♦■t*********************^

csdfe(y, q, d, t)

cd
cd
cd
cd
cd

60

cd q(i) r total formation rates. i

cd d(i) r total loss rates. i

cd t r the value of the independent variable. i

cd
c(j ***********************************

c
c local specifications.

c

real ne, n2

real y(l), q(l), d(l)

c
c utilize local storage for varibles.

o2m = y(l)

csp = y(2)

cs = y(3)

cso2 = y(4)

o2 = y(5)

n2 = y(6)

c write(63,*) t

c
c calculate electron density for local use and transmission back to

c the main program via y(7). however in this case this value should

c not be trusted since "chemeq" will not call the "gsub" with the
c latest function values after the final step has converged. y(7)

c will be one iteration behind in this case. y(7) and y(6) are
c examples tho, of how data may be transfered between the "gsub" and

c the main program.
ne = max(csp - o2m, 0.0)

y(7) = ne

c
c calculate reaction rates.

crl = 5.00e-08*o2m*csp

cr2 = 1.00e-12*csp*ne

cr3 = 3.24e-03*cs

cr4 = 4.00e-01*o2m
cr5 = 1.00e-31*o2*cs*(cs + cso2 + n2 + o2)
cr6 = 1.24e-30*o2*o2*ne

cr7 = 1.00e-31*o2*n2*ne

c if(t.ge.700.) then

c cr4= 0.
c cr6 = 0.

c cr7 = 0.

c end if

c
c calculate total formation rates (c(i)) and total loss rates (d(i))

c for each species.

c
c o2m

61

q(l) = cr6 + cr7
d(l) = crl + cr4

c
c cs+

c
c cs

q(2) = cr3
d(2) = crl + cr2

q(3) = crl + cr2
d(3) = cr3 + cr5

c
c cso2

q(4) = cr5
c q(4) = q(4) - 1.00e-31*o2*cs*cso2
c d(4) = - 1.00e-31*o2*cs*cso2
c
c o2

q(5) = crl + cr4
d(5) = cr5 + cr6 + cr7

return
end

62

10.3 Output from the Sample Programs

Running the cesium test problem as given with an "-r8" compiler flag (or equivalent) will result in the
following screen output describing the case, unsealed and scaled run time, and the resulting rms error:

EPS, time, ticks, error: 0 1E+00 0 9760E-03 1 0 4336E-02

EPS, time, ticks, error: 0 5E-01 0 1952E-02 2 0 1035E-02

EPS, time, ticks, error: 0 1E-01 0 5856E-02 6 0 1093E-03

EPS, time, ticks, error: 0 5E-02 0 7808E-02 8 0 5876E-04

EPS, time, ticks, error: 0 1E-02 0 2342E-01 24 0 9786E-05

EPS, time, ticks, error: 0 5E-03 0 3611E-01 37 0 4845E-05

EPS, time, ticks, error: 0 1E-03 0 8491E-01 87 0 9995E-06

EPS, time, ticks, error: 0 5E-04 0 . 1200E+00 123 0 .5195E-06

EPS,

69

time, ticks, error: 0 .1E-04 0 .2538E+00 260 0 .1154E-06

Of course, run times will differ on different platforms, and the timing routines called by the driver routine
may not be available on all systems.

Additional output found in fort. 16 is given below. This file holds a more detailed account of the results
of each integration, including a count of the number of times the source term subroutine was called and the
number of timesteps that were redone. Included below is this information for the last calculation in the test
problem, for EPS = 1.000E-05.

CASE NO. 9 PARAMETERS;
CONVERGENCE PARAMETER EPS = 1.000E-05
INNER LOOP LENGTH; 1
initalize ''chemeq2'' via ''chemsp''
epsmn, epsmx, dtmn, tnot, itermx = 1.000E-05 O.O00E+0O 0.000E+00 0.000E+00

5
ns = 7
ymin: 0.100E-19 0.100E-19 0.100E-19 0.100E-19 0.100E-19
0.100E-19 0.100E-19

INITIAL = = (0.000E+00) T - FINAL = (1. 000E+03)

SPECIE Y - INITAL Y - FINAL Y - SOLUTION REL ERR
02- 5 200000E+02 2.591395E+04 2 591395E+04 9 164E-08

CS+ 6 200000E+02 7.557185E+04 7 557185E+04 9 755E-08
CS 1 000000E+12 1.531941E+03 1 531941E+03 2 271E-07
CS02 0 000000E+00 9.999999E+11 9 999999E+11 1 .467E-08
02 3 600000E+14 3.590000E+14 3 590000E+14 1 .485E-09
N2 1 .400000E+15 1.400000E+15 1 400000E+15 0 .000E+00
NE 1 -000000E+02 4.965790E+04 4 965790E+04 1 .006E-07

INTEGRATION STATISTICS;
SUM OF THE RELATIVE ERRORS SQUARED; 1.154E-07
CPU TIME USED FOR INTEGRATION; 2.S38E-01 SEC,

260
CPU TIME NORMALIZED;

chemeq indices; tmk
313597 29

1.000E+03 gcount, rcount 149451 3 totals:

63

